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PERTAIN CASES OF LOSS OF ~O~TR#~ 

OVER THE MOTION OF SYMMETRICAL SYSTEd 

M.I. FEIGIN 

The bifurcatians of periodic motions of nonlinear systems are studied, which can 
lead to a state in which the changein thesfgnofthecontrolparameterceaseatoaf- 
fectthecharacterof the nonsymmetricmotionofthe system. Results of the investiga- 
tion of the concrete systems (piecewise connected and with power-type nonlinearity) 
are given, illustrating the mechanism of the appearance of a malfunction. 

It is known that, generally speaking, nonsymmetric motions can appearinsymmetsicsystems 
when the symmetric motions become unstable (e.g. /l/1. The domain of the parameter values in 
which the syrsaetric and nonsymmetric steady state modes are both stable, was discoveredinthe 
trigger scheme /2,3/. Analysis of a number of other symmetric systems has discovered numer- 
ous symmetric and nonsymmetric motions, and the possibility of intersection of their domains 
of existence /4-6/. In this connection a study of the cases in which a stable noncontrolled 
motion exists along with a stable controlled motion /7/, becomes important. In practice, such 
a situation is "potentially dangerous" since it is not discovered until the instant at which 
the control is lost. It is essential that the determination of the position of the region, 
within which loss of control may occur, in the parameter space, must be preceded by separa- 
tion of the bifurcation nodes corresponding to the onset of the nonsymmetric motions. 

The present paper deals with the cases of generation of nonsymmetric motions related to 
the loss of stability of symmetric oscillations, as well as to the violation of conditions of 
their existence in the piecewise connected systems. It is shown that the corresponding bi- 
furcation boundaries of stability and the C-boundaries of the parameter space are dangerous 
fS/ and hysteretic. An oscillator with the displacement limiters and a system described by 
the Duffing equation already investigated more than once are used as examples. The nodal 
points at which nomqmxnetric solutions with external force periods are generated ma the 
regions of possible loss of control are specified in the parameter space. 

1. Generation of nonsynnnetric motions from the symmetric when stability 
is lost. Let smooth surfaces s+ and 8_ exist in the phase space x~,...,z,_~ of the non- 
linear dynamic system such, that the problem of the motions in question x(t) can be reduced 
to the study of a sequence of point transformations of these surfaces one onto the other 

=i = f' f&., % t,, a+)* 3% = I- f&2, %, t,, s)* , . tI.lf 

Here f' and f are periodic vector functions 2T-periodic in t, in which f,' = 0, I,--0 
represent the equation of the surfaces "s+, s_ (x, (t)snO) and a+, a_ are parameters. We pass to 
the new parameters a and /A 

a+ =a+~,u_=-a+~ 

Let the following relations hold at p = 0: 

f (t&+X i- T, -.% f -F T, --rtf = -F (%*zr .%Rt &,a) f1.2) 

The above relations can naturally be called the conditions of symmetrisability, since in this 
case symmetric solutions in the sense s(t+ T) = -z(t) are possible in the system. To study 
the fixed point x0 = xg = x*, t, = t, - ZT = t, of the transformations (1.1) corresponding to 
a symmetric solution, it is sufficient ta consider the first transformation of (l.l), comple- 
menting its conditions With 

50 = -zn b, = t,-- T f1.3) 

Thus the coordinates +,t* are given by the equations 

-% = f (t+ + T, 4, t,, a) (1.4) 

and the stability is determined by the distribution , with respect to a unit circle, of the 
roots of the characteristic nolvnomial 
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det F (I) = 0 (1.5) 

where F(L) is a square matrix the elements of which are equal to the values of the correspond- 
ing partial derivatives at the fixed point 

(1.6) 

i = 1, . . ., n; j = 1, . ..,n-1 

Inwhatfollows, we shall regard the solution (1.41 as the reference supporting solution rr and 
introduce, for every point xk of the sequence (1.11, tsar variables &,T@ 

q = (---Q's* + &k, tk = t, $ kT + (--l)“~. (1.7) 

Taking into account (1.21, we write the equations (1.1) in the new variables in the form 

51 = 5* $ f' (t* + T - Zl, r* + 50, t, "I- ro, a + t4 (1.8) 

--F;e = r* + f’ (t* -I- T + 7x1 x* - fu t, - Tl, a - I4 

The expressions (1.81 differ only in the signs of the variables f,T and p. Therefore if 
r* is known, then the coordinates of the point sequence generated by the phase trajectories 
of the nonsymmetric system can be found using only the first system of equations of (1.81, 
with the signs of %, T, ~1 reversed successively. Thus the periodic solutionthe trajectory of 
which is obtained by joining two segments, is determined by the system of equations (1.8) sup- 
plemented by the conditions %a = %,,,T%= zo, or by the condition which can be written more 
simply as %S = %o, provided that the quantity r is formally understood to be the n&h CO- 

ordinate of the vector % 
We study the bifurcation transitions by considering the motions close to I?,. In addi- 

tion to the parameter p characterizing the lack of symmetry in the system, we introduce the 
parameter s by setting a = a, -I E, th e change in which does not affect the symmetry. We note 
that when a symmetric solution (e#O,p = 0) different from r* is investigated, the coordinates 
Eo, %I satisfy, according to (1.31, (1.7), the relation 

eo = -51 (1.9) 

Let the right-hand sides ofequations (1.8) admit, for IpI, I &I< Ia I , expansion into series 
in the neighborhood of x*, &,a,. We rewrite these equationsin linearized form and transform 
them, treating the sums go + fl and differences go- $1 as the unknowns: 

F (-1) x (~0 + EL) = --ZAP., F (1) x (so - 51) = --2Ae (1.10) 

(A = i3f+fAz) 

Here Ffztfl) represents the matrix (1.6) for h = i and X = -1, respectively. IfdetF(- 1)# 0, 
then from the first system of equations of (1.10) it follows that when p = 0,i.e. in the sym- 
metric system, there exists only a symmetric motion. In the nondegenerate case det F(~frf)# 0 
we can assume that e = 0 without loss of generality. Then the linearized equations (1.10) de- 
termine the unique nonsymmetric solution 

& = E, = e, = -P'(4) Ap (1.11) 

This implies that, firstly, a single first system of equations of (1.8) supplemented by the 
relation (1.11) is sufficient for determining a nonsymmetric solution in the coordinates % and 
r, with an error of Pa' Secondly, a changeinthe character of the nonsymmetric motion of 

the system, i.e. thechangeinthe sign of the solution (1.7), can have two causes, namely the 
change in the sing of the parameter p and the passage of the root of the characteristic equa- 
tion (1.5) through the value h = -1, since 

G3,<-I x G%-l~O (1.12) 

The degenerate case detF(-I)=0 corresponds to the existence, at p = 0, of nonsymmetric 
solutions E"= E,,= .&+ 0 which are close to the reference solution. In this case (1.10) be- 
comes insufficient for the determination of the coordinates of the first system of linearized 
equations. Let the rank of the Jacobian of the first system of (1.8) be equal to n-l when 
p=o, and let us assume that when fi = 0,s = a, + e, then any, e.g. the first n- j equations 
will be sufficient to express the unknown aoordinates of the nonsymmetric solutionas functions 
of z0 and (2. We substitute ~(T~,E} into the last equation 
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and write it 
in question, 
existence of 

f,’ (t* + T - To, .r* + e” (9 + e), t, f ~0, a, + E) = 0 (1.13) 

in the form of a series in +' and E. In the general case of the degeneration 
the first nonzero terms will be those containing rDz and 8. The condition of 
the solution to'> 0 sought has the corresponding expression 

sign&= -sign ( asIn+ at + 
r X---c aa ! (1.14) 

It follows that the change in s during the passage through e = 0 is accompanied, in thephase 
space, by either an appearance or disappearance of two nonsymmetric periodic solutions. As 
regards the symmetric solution (1.9) , it exists according to the second system of (1.101, for 
both s>O and e<O. Thus the boundary s = 0 separates the region of existence of a sym- 
metric solution from the region in which, in addition to the symmetric solution, a pair of 
nonsymmetric solutions also exists. The boundary between those two regions in the 8, p para- 
meter plane must be, generally speaking, irreversible (hysteretic) by virtue of the condition 
(1.12). If the degeneration detF(--1) = 0 is connected with the symmetric solution's loss of 
stability, then either two stable nonsymmetric solutions fFig.la) appear at the node E = p = 
0, or the merger takes place with the pair of unstable nonsymmetric solutions (Fig.lb), 

2. Generation of nonsymmetric motions at C-bifurcations. Let the phase half- 
space of the symmetric system be composed of regions of the same dimension ma,@@, and let 
the phase trajectory r, be symmetrically distributed in @,. On changing the parameter a 
the C-bifurcation of the motion r=i.s accompanied by the arrival of its trajectory at the 
boundary of the region d?, and merger with the phase trajectory of the symmetric periodic mo- 
tion r@ containing the part of the motion appearing in the region I@B. The fixed points cor- 
responding to r,, rp are determined using the "shortened" equations of the transformations 
generated by the phase trajectories, on the half-period of the motions only 

a 

a b 

Fig.2 

21 = fa (G, %r t,, a), 21 = fs @I, xg* t,, a) (2.1) 

and artificially closed by the conditions (1.3). The stability of the fixed points is deter- 
mined by the spectrum of the eigenvalues ai, pi, 

We shall denote the "semiperiodic" motions by A,B if they are stable, and by a,p if 
they are unstable, and the total motions l',,r, we denote by A-4, BB,aa,@ (Fig.2). At the 
C-birfucation the semiperiodic motions coincide, therefore the conditions used in determin- 

ing the structure of the C-boundary /6/ require the knowledge of the total number of real 
values of r&i and fii situated to the right of +*fU+) and left of -t(P). 

lo. If a, is even, then both semiperiodic and complete motions transform into eachother. 
The following transition patterns are possible: 

AA+BB,AA+~~,aa+~~ (2.2) 

2O. If a+ is odd, then the semiperiodic motions merge with complete motions and vanish. 
Two cases are possible 

AA,BB+iZr.aa,BB+0 (2.3) 

3O. If p is odd, then the simplest bifurcations shown above are accompanied by the 
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appearance (or disappearance) of a double semiperiodic motion the trajectory of which is com- 
posed of the trajectories of the semiperiodic motions (Fig.2b) and corresponds to the non- 
symmetric periodic motion. BY virtue of the symmetry of the initial mathematical model the 
order inwhichthe semiperiodic motions are joined, is equivalent. Consequently a pair of 
nonsymmetric periodic motions AB,M or a& @a (Fig.2bl appears in (or disappears from) the 
phase space at once. The transitions (2.2), (2.3) are accompanied by the change of sign of 
the expression (1.5) at h = -1, therefore, when the control parameter p is introduced, the 
dependence of the periodic solutions close to AA,aa and BB,@ , on ~wi.11 have differentsigns 
and the corresponding C-boundaries of the a,~ parameter planewillbeirreversible (hysteretic). 

The location of the region of existence of the nonsymmetric modes relative to the c-- 
boundary is determined by the roots hi of their characteristic equation, and the roots of the 
double semiperiodic motion formally constructed from the semiperiodic motion. Let us denote 
these roots by ai*. The motions constructed in this manner coincide in the case of c -bi- 
furcation and conditions lo- 3O formulated above apply to them. Thus, depending on whether 
the total number of real values of hi and aip situated totheright of +i(c+')is even or odd 
the region of existence of nonsymmetric motions either coincides with the region of existence 
of r,, or is situated on the other side of the C-boundary. 

The process of determining the structure of the C-bifurcation transitions describedhere 
can in turn be applied to periodic modes obtained by joining two, four, etc. semitrajectories. 
Limiting ourselves to the double semiperiodic nonsymmetric motions, we find that apart from 
(2.2), (2.3) the following structures of the C-bifurcation transitions are possible in the 
symmetric systems. The change in the type of symmetric motion when a pair of nonsymmetric 
motions appears, takes place when P is odd and c, , c+'are even. In this case the follow- 
ing five structures are possible: 

A merger followed by a disapperance of two types of symmetric motions and of a pair of non- 
symmetric motions will take place when all three numbers c,, PI 0,' are odd, and three transi- 
tion structures are then possible 

AA,BB,a& Ba+#;ca, BB, AB,BA-+#;aa,$B, a#bBa-+@ 

3. The examination of the bifurcations of periodic motions carried out above enables us 
to single out several interesting features of a possible behavior of the systems in the neigh- 
borhood of the bifurcation boundaries. The first one is the high sensitivity of the motion 
towards the lack of symmetry in the system (parameter ~1). According to (1.111, this should 
be expected when 1 detF(--1)1(< 1. This may prevent the strictly symmetric motions from being 
observed/g/. Thesecond featureis thepossibilityofareverseeffect, namely,thedetection of a. 
"flickering" symmetric motion in the regions of the parameter values in which the symmetric 
motions are unstable. The flickering mode can be observed in a narrow band of existence of 
a pair of stable nonsymmetric motions , provided #at the bandisoverlappedbythe fluctuations 
in the value of the parameter p. The third case isthepossibility of loss of control over 
the motion of symmetric systems when the change in the sign of the control parameter fl ceases 
to affect the character of the nonsymmetric motion of the system. 

As the first example of the system in which the loss of control over the motion mayoccur, 
we shall consider the forced vibrations of an oscillator with limiters described in the dimen- 
sionless form by the equations 

z" + 5 = cos Ot, a_ < I< a, (3.1) 

x' (T + 0) = -Rx* (z - 0), x = a,, x = a_ 

where R is the velocity restoration coefficient (0< R (1). The collisionless periodic mo- 
tions represent the forced steady state oscillations of a linear system 

P($=~=*~oswT, a_<x<a+ (3.2) 

Let us pass to new parameters a = (a, - a-)/2, p = (a+ + a-)/2. We introduce the point transform- 
ations II,+, and the transformations IItransforming the half-surface x=0,x'> 0 onto the half- 
surface x = 0, ~'(0, generated by the trajectories of the system (3.1). The equations of He 
include the collision at the instant z = Y,E (ro,7.J and are written in the form 

21' = -R (p$' + p. sin ~~~ + (z,,* - p~')cos T,,~) (3.3) 

pt - po cos Z@l + (50' - Po’) sin 701 - a--p = 0 
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x2’ = p2. + (PI - a - 14 sin r10 + (x1’ - pl’) cos r12 

pz - (pl - a - p) co9 zle + (x1* - pl’) sin 212 = 0 

T11 = zj - ?ir Pi = P bi) 

and the equations of II are determined by a collisionless trajectory 

X? * = p2 -I- p. sin Toa + (x0 - PO’) cm 702 
pz - pO cos r02 + (xi - pO’) sin ~~~ = 0 

(3.4) 

when p = 0, the right-hand sides of the equations satisfy the conditions of symmetrizability 
(1.2). The coordinates of the fixed point of the symmetric equation (stable BB, or unstable 

BBS)1 with twocollisionsper period 2T = 2n/o are obtained by complementing the equations 
(3.3) 'by conditions (1.3). In the case of C-bifurcation merger of the collision and collis- 
ionless periodic solutions we either have x,*+-O for rIfi , or, in the case of 
of the following conditions will hold: 

l~i=~+p,~<O;IxI=~--~~ P>O 

n (3.4) one 

(3.5) 

Analyzing the roots of characteristic equations at ~1 = 0 shows that the C-boundary 
(3.5) corresponds to the simplest transition &3,+AA and either separates the region of ex- 
istence of the symmetric collisionless motion AA from that of the nonsymmetric subharmonic 
motions with a single collision per period 2T=2Xn/o (k=l,Y,...) within the frequencyinter- 
val 

2n + 1 < l/o < 2n + 1 + 2-k, n = 0, 1, 2,... (3.6) 

or it represents aboundary at which they merge and subsequently vanish within the intervals 

2n + 1 + 2-k < I/o < 2n + 1 + 2++' (3.7) 

The bifurcation pattern for the case when the nonsymmetric character of the system is taken 
into account, is discussed for o=0.8,H=0.5. The structure of the C-boundary (3.5) is deter- 
mined by the condition (3.6) for a= 0, k= 1, and by the roots of the characteristic equation 
of the subharmonic, single collision solution of the order of 4. When p=O, the structure 
is described, within the framework of the motions under consideration, by the transition 

BAAA, AAAB, pa, afi, &is+AA 

The symmetric, two-collision motion fif% retains its instability in the interval y= a/x E(0.5; 
1,O). At Y= 0.5 it becomes stable, with the root passing through the value &=---1. We can 
sharpen the structure of such a bifurcation transition in accordance with the condition (1.14), 
by setting y= 0.5+e. The case h= -1 has the corresponding solution z.'= -0.381, tgoG= -0.105 
and the values of the corresponding derivatives are +z'= -0.546, z,'=O.307, zFT'= 1.38, fa= 0.68, f,%= 
0.341. In accordiance with (1.14) a pair of nonsymmetric solutions @n exists when e<O, 
therefore we have, intheneighborhood of ~=0.5,p= 0, the transition flf&~,&,BB~ -f% (Fig. 
lb) along the axis a. The bifurcation node is a source 
ponding to the root b= 1 for one of the motions f% when 

p > 0. 

Fig.3 

of the limits of stability corres- 
p<O, and for the other motion when 

The analysis of the nonsymmet- 
ric motions of the type pa,ap yields 
the following equations forthebound- 
aries of stability@= -1): a+p= 0.691 
if --a +- p <sag,, --a f p = 0.691 when 
a + P > 5 (%ax. The boundaries shown 
extend to their intersections with 
the C-boundaries of the Cl or C, 
apperance of additional contact be- 
tween the trajectories of motion and 
the second limiter z= --a+~ or 
==a+~. The boundaries Cl and CI 
originate at the node Y= 1, P= Oand 
intersect each other and the axis II 
at the node I/ = 0.495. The structure 

of the boundaries in the parameter space is determined by the roots of the characteristicequa- 
tions of soltuions of the type p&,AE,@. If a single collision motion is stable, then we 
have the transition ~P,,,AB~Q, and we have &,a~--a~fiB if it is unstable. 
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Fig.3 depicts the separation of the Y, p'= ~1% parameter plane into regions containing 
various periodic motions, and the structures of the separated bifurcation boundariesare shown 
within the framework of the periodic solutions under consideration. In the interval 0.8< 
y<l.O the symmetric solutions are unstable, the boundaries C, and C, which determine the 
region of existence of two stable nonsymmetric solutions, are situated in a narrow strip 
1 p’ \<0.03. If the fluctations of p'overlap the strip in question, a flickering symmetric mo- 
tion can be expected. Such motion is indeed observed when the behavior of the system is sim- 
ulated on an analog computer. 

The control over the motion can be lost in the interval 0.48<y<O.52. Fig.4 depicts the 
relations 

2T 
1 

J (P’) = x s z (~7 P’) dr 
0 

for some values of the parameter Y obtained analytically and by modelling on a digital com- 
puter. The case of Y= 0.505 should be treated separately, since when p'=0, we have several 
nonsymmetric stable solutions while the symmetric solution is found to be unstable. The latter 
is easily discovered and the problem of control can be solved by choosing the interval of 
variation equal to (p'I>O.O5 (similar cases occur, e.g. in investigating the control of ships). 
A crisis situation can still arise in the interval IP't<O.i5 when the system passes into an 
uncontrollable mode of motion (indicated by an arrow). 

Fig.4 Fig.5 

As a second example we consider a system with power type nonlinearity described by the 
Duffing equation 

5" + 0.22’ + x + 513 = F cos ot + p 

The region of possible loss of control over the motion was separated by, first determining 
the nodes at which the nonsymmetric solutions were generated at the fundamental frequency. We 
shall use the qualitative pattern of the structure of the parameter space obtained in the 
previous example. The nonsymmetric solutions were appearing at the frequency o = 0.8 when 
the limiters of the oscillator displacements were moved nearer to each other. IntheDuffing 
equation the increase in the value of Fcorresponds to "converging of the limiters". 

Integrating the equations numerically on a computer using the Runge-Kutta method, enabl- 
ed us to separate the interval of possible loss of control 5.5<P<8.0 in which the nonsym- 
metric solutions exist. The symmetric solution is stable when F< 6.7. It becomes unstable 
with increasing F>6.7, and generates an additional pair of stable nonsymmetric solutions 
including the solutions which are subharmonic, but sufficiently close to the symmetric solu- 
tions. 

It should be noted that from the practical point of view it is often sufficient to in- 
spect the behavior of the system at prescribed values of the parameters, without concerning 
ourselves with the concrete types of the motions actually taking place. 

Fig.5 depicts the relation 

PT 

J (P) = s 2 (h IL) dt 
0 

In the case of F=6.5 loss of control is possible in the interval IpI<0.07, and for the case 
F= 7.5 in the interval IpI<O.li. The crisis situation is accompanied by an unexpectedpassage 



752 

of the system into the uncontrollable mode of motion (indicated by an arrow). 
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